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Big Questions

1. What are the nuclear and neutrino 
processes that shape cosmic 
explosions and nucleosynthesis ?    !

2. What are the phases and properties 
of matter encountered in neutron 
stars, supernova and binary neutron 
star mergers ?!

3. Where and how are the heavy 
elements synthesized ?!

4. Can we interpret multi-messenger 
signals with advanced modeling 
and simulations to extract 
fundamental nuclear physics ?
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Origin of R-Process Nuclei
  Core Collapse Supernovae or NS Binary Mergers?
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Figure 3: Neutron star (NS) mass-radius diagram. The plot shows non-
rotating mass versus physical radius for several typical NS equations of state
(EOS)[25]. The horizontal bands show the observational constraint from our
J1614−2230 mass measurement of 1.97±0.04 M⊙, similar measurements for
two other millsecond pulsars[3, 26], and the range of observed masses for
double NS binaries[2]. Any EOS line that does not intersect the J1614−2230
band is ruled out by this measurement. In particular, most EOS curves in-
volving exotic matter, such as kaon condensates or hyperons, tend to predict
maximum NS masses well below 2.0 M⊙, and are therefore ruled out.
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J1614−2230 mass measurement of 1.97±0.04 M⊙, similar measurements for
two other millsecond pulsars[3, 26], and the range of observed masses for
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Fig. 17.— Figure showing the constraint on the dEoS imposed by the radius measurement obtained in this work: RNS = 9.1+1.3
−1.5 km

(90%-confidence). The dark and light shaded areas show the 90%-confidence and 99%-confidence constraints of the RNS measurement,
respectively. The mass measurement of PSR J1614-2230 is shown as the horizontal band (Demorest et al. 2010). “Normal matter” EoSs
are the colored solid lines. Other types of EoSs, such as the hybrid or quark-matter EoSs are included for comparison, with dashed lines.
As mentioned in Section 5, the present analysis only places constraints on the “normal matter” EoSs since they are the only family of EoSs
included in our assumptions. Among them, only the very soft dEoSs (such as WFF1, Wiringa et al. 1988) are consistent with the radius
obtained here. The EoS are obtained from Lattimer & Prakash (2001, 2007).

distribution, i.e., with the fewest assumptions, that can
be produced. Also, the progressive relaxation of the as-
sumptions throughout the analysis demonstrated that no
unexpected behavior was present in the final MNS–RNS
distributions of Run #7 and that the resulting low-value
of RNS was not affected by systematics.
Previous works reported low values of NS radii, but

these measurements have high uncertainties due to low
S/N, leading to poorly constrainedRNS andMNS (e.g., in
NGC 2808, Webb & Barret 2007; Servillat et al. 2008).
Another qLMXB in NGC 6553 was identified with a
small radius, RNS = 6.3+2.3

−0.8 km (90%-confidence) for
MNS = 1.4M⊙ (Guillot et al. 2011b). However, low-
S/N Chandra observations demonstrated that the XMM
spectra of the source was affected by hard X-ray contami-
nation from a marginally resolved nearby source. Higher-
S/N observations with Chandra are necessary to confirm
the qLMXB classification and produce the uncontami-
nated spectrum necessary for its use in the present anal-
ysis.
In addition to qLMXB RNS measurements, low radii

were found from the analysis of photospheric radius ex-
pansion type-I X-ray bursts. A review of the method
used to determine RNS from these sources can be found
in the literature (Özel 2006; Suleimanov et al. 2011b).
The LMXBs EXO 1745-248, 4U 1608-52, and 4U 1820-
30 were found to have respective radii in the 2σ ranges
RNS = [7.5 − 11.0] km (Özel et al. 2009), RNS = [7.5 −
11.5] km (Güver et al. 2010a) and RNS = [8.5 − 9.5] km
(Güver et al. 2010b), respectively. While these results
are on a par with what is found in this paper, controversy
emerged with the realization that the analysis presented
in the cited works was not internally consistent because
the most probable observables (from Monte-Carlo sam-

pling) led to imaginary masses and radii (Steiner et al.
2010). Relaxing the assumption that the photospheric
radius equals the physical radius RNS at touchdown led
to real-valued solutions of MNS and RNS, and to larger
upper limits for the radius. Furthermore, it is argued
in a later work that the short bursts from EXO 1745-
248, 4U 1608-52 and 4U 1820-30 are not appropriate for
such analysis because the post-burst cooling evolution
of these sources does not match the theory of passively
cooling NSs (Suleimanov et al. 2011a). Therefore, the
MNS–RNS constraints from type I X-ray bursts should
be considered with these results in mind.
More recently, distance independent constraints in

MNS–RNS space were produced from the analysis
of the sub-Eddington X-ray bursts from the type I
X-ray burster GS 1826-24 (Zamfir et al. 2012). That
analysis, performed for a range of surface gravities
(log10 (g) = 14.0, 14.3, 14.6) and a range of H/He abun-
dances (0.01 Z⊙, 0.1 Z⊙ and Z⊙) led to radii RNS ∼<
11.5 km. While distance-independent, the results are
highly influenced by the atmosphere composition and
metallicity. For pure He composition, the upper limit
of RNS becomes RNS ∼< 15.5 km (Zamfir et al. 2012).
Finally, the multiwavelength spectral energy distri-

bution of the isolated neutron star RX J185635-3754
was analyzed to produce small values of RNS and MNS
with no plausible dEoS consistent with these values:
RNS ∼ 6 km and MNS ∼ 0.9M⊙ for d = 61 pc
(Pons et al. 2002). A recent distance estimation to the
source d = 123+11

−15 pc (Walter et al. 2010) led to revised
values: RNS = 11.5±1.2 km and MNS = 1.7±1.3M⊙
(Steiner et al. 2012). While this result is consistent with
the RNS measurement obtained in this paper and with
the other works reporting low-RNS values, it has to
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Figure 3: Neutron star (NS) mass-radius diagram. The plot shows non-
rotating mass versus physical radius for several typical NS equations of state
(EOS)[25]. The horizontal bands show the observational constraint from our
J1614−2230 mass measurement of 1.97±0.04 M⊙, similar measurements for
two other millsecond pulsars[3, 26], and the range of observed masses for
double NS binaries[2]. Any EOS line that does not intersect the J1614−2230
band is ruled out by this measurement. In particular, most EOS curves in-
volving exotic matter, such as kaon condensates or hyperons, tend to predict
maximum NS masses well below 2.0 M⊙, and are therefore ruled out.
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respectively. The mass measurement of PSR J1614-2230 is shown as the horizontal band (Demorest et al. 2010). “Normal matter” EoSs
are the colored solid lines. Other types of EoSs, such as the hybrid or quark-matter EoSs are included for comparison, with dashed lines.
As mentioned in Section 5, the present analysis only places constraints on the “normal matter” EoSs since they are the only family of EoSs
included in our assumptions. Among them, only the very soft dEoSs (such as WFF1, Wiringa et al. 1988) are consistent with the radius
obtained here. The EoS are obtained from Lattimer & Prakash (2001, 2007).
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S/N observations with Chandra are necessary to confirm
the qLMXB classification and produce the uncontami-
nated spectrum necessary for its use in the present anal-
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pansion type-I X-ray bursts. A review of the method
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in the literature (Özel 2006; Suleimanov et al. 2011b).
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11.5] km (Güver et al. 2010a) and RNS = [8.5 − 9.5] km
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are on a par with what is found in this paper, controversy
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in the cited works was not internally consistent because
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pling) led to imaginary masses and radii (Steiner et al.
2010). Relaxing the assumption that the photospheric
radius equals the physical radius RNS at touchdown led
to real-valued solutions of MNS and RNS, and to larger
upper limits for the radius. Furthermore, it is argued
in a later work that the short bursts from EXO 1745-
248, 4U 1608-52 and 4U 1820-30 are not appropriate for
such analysis because the post-burst cooling evolution
of these sources does not match the theory of passively
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of the sub-Eddington X-ray bursts from the type I
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analysis, performed for a range of surface gravities
(log10 (g) = 14.0, 14.3, 14.6) and a range of H/He abun-
dances (0.01 Z⊙, 0.1 Z⊙ and Z⊙) led to radii RNS ∼<
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was analyzed to produce small values of RNS and MNS
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the RNS measurement obtained in this paper and with
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Figure 3: Neutron star (NS) mass-radius diagram. The plot shows non-
rotating mass versus physical radius for several typical NS equations of state
(EOS)[25]. The horizontal bands show the observational constraint from our
J1614−2230 mass measurement of 1.97±0.04 M⊙, similar measurements for
two other millsecond pulsars[3, 26], and the range of observed masses for
double NS binaries[2]. Any EOS line that does not intersect the J1614−2230
band is ruled out by this measurement. In particular, most EOS curves in-
volving exotic matter, such as kaon condensates or hyperons, tend to predict
maximum NS masses well below 2.0 M⊙, and are therefore ruled out.
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are the colored solid lines. Other types of EoSs, such as the hybrid or quark-matter EoSs are included for comparison, with dashed lines.
As mentioned in Section 5, the present analysis only places constraints on the “normal matter” EoSs since they are the only family of EoSs
included in our assumptions. Among them, only the very soft dEoSs (such as WFF1, Wiringa et al. 1988) are consistent with the radius
obtained here. The EoS are obtained from Lattimer & Prakash (2001, 2007).
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nation from a marginally resolved nearby source. Higher-
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the qLMXB classification and produce the uncontami-
nated spectrum necessary for its use in the present anal-
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were found from the analysis of photospheric radius ex-
pansion type-I X-ray bursts. A review of the method
used to determine RNS from these sources can be found
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30 were found to have respective radii in the 2σ ranges
RNS = [7.5 − 11.0] km (Özel et al. 2009), RNS = [7.5 −
11.5] km (Güver et al. 2010a) and RNS = [8.5 − 9.5] km
(Güver et al. 2010b), respectively. While these results
are on a par with what is found in this paper, controversy
emerged with the realization that the analysis presented
in the cited works was not internally consistent because
the most probable observables (from Monte-Carlo sam-

pling) led to imaginary masses and radii (Steiner et al.
2010). Relaxing the assumption that the photospheric
radius equals the physical radius RNS at touchdown led
to real-valued solutions of MNS and RNS, and to larger
upper limits for the radius. Furthermore, it is argued
in a later work that the short bursts from EXO 1745-
248, 4U 1608-52 and 4U 1820-30 are not appropriate for
such analysis because the post-burst cooling evolution
of these sources does not match the theory of passively
cooling NSs (Suleimanov et al. 2011a). Therefore, the
MNS–RNS constraints from type I X-ray bursts should
be considered with these results in mind.
More recently, distance independent constraints in

MNS–RNS space were produced from the analysis
of the sub-Eddington X-ray bursts from the type I
X-ray burster GS 1826-24 (Zamfir et al. 2012). That
analysis, performed for a range of surface gravities
(log10 (g) = 14.0, 14.3, 14.6) and a range of H/He abun-
dances (0.01 Z⊙, 0.1 Z⊙ and Z⊙) led to radii RNS ∼<
11.5 km. While distance-independent, the results are
highly influenced by the atmosphere composition and
metallicity. For pure He composition, the upper limit
of RNS becomes RNS ∼< 15.5 km (Zamfir et al. 2012).
Finally, the multiwavelength spectral energy distri-
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was analyzed to produce small values of RNS and MNS
with no plausible dEoS consistent with these values:
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(Pons et al. 2002). A recent distance estimation to the
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FIG. 6: The mass M (in M⊙) and radius R (in km) for pure neutron stars, using a Fermi gas

EoS. The stars of low mass and large radius are solutions of the TOV equations for small values

of central pressure p̄(0). The stars to the right of the maximum at R = 11 are stable, while those

to the left will suffer gravitational collapse.

The thermal component of the pressure in cold stars is by definition negligible. Thus,

variations in both the energy density and pressure are only caused by changes in the density.

Given this simple observation, let us examine why we expect a maximum mass in the

Newtonian case.

Here, an increase in the density results in a proportional increase in the energy density.

This results in a corresponding increase in the gravitational attraction. To balance this,

we require that the increment in pressure is large enough. However, the rate of change

of pressure with respect to energy density is related to the speed of sound (see Sec. 6.3).

In a purely Newtonian world, this is in principle unbounded. However, the speed of all

propagating signals cannot exceed the speed of light. This then puts a bound on the pressure

increment associated with changes in density.
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eventually run into the situation in which any increase in density will result in an additional

gravitational attraction that cannot be compensated for by the corresponding increment in

pressure. This leads naturally to the existence of a limiting mass for the star.

When we include general relativistic corrections, as discussed in Sec. 2.2 earlier, they act

to “amplify” gravity. Thus we can expect the maximum mass to occur at a somewhat lower
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Part I: !
Equation of State (EOS) 

EOS of cold dense matter uniquely determines neutron 
star structure. !
!
Pressure v/s Energy Density ⬌  Mass v/s Radius 



Figure 3: Neutron star (NS) mass-radius diagram. The plot shows non-
rotating mass versus physical radius for several typical NS equations of state
(EOS)[25]. The horizontal bands show the observational constraint from our
J1614−2230 mass measurement of 1.97±0.04 M⊙, similar measurements for
two other millsecond pulsars[3, 26], and the range of observed masses for
double NS binaries[2]. Any EOS line that does not intersect the J1614−2230
band is ruled out by this measurement. In particular, most EOS curves in-
volving exotic matter, such as kaon condensates or hyperons, tend to predict
maximum NS masses well below 2.0 M⊙, and are therefore ruled out.
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2 Solar Mass Neutron Star

Shapiro-delay

Demorest et al. (2010) !
discovered a massive 
neutron star in a binary 
system- using pulsar 
timing. !
A precise mass 
determination was 
possible because 
Shapiro-delay was 
detectable.   

Green Bank 
Radio  
Telescope

de
la

y

orbital phase



Radii from Quiescent NS  

• Can extract radius subject to the assumptions: (i) surface 
temperature is uniform; (iii) atmosphere composition is known 
and (iii) distance and inter-stellar absorption is measured.    

Heinke et al, and Steiner & Lattimer  (2014)28
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Fig. 17.— Figure showing the constraint on the dEoS imposed by the radius measurement obtained in this work: RNS = 9.1+1.3
−1.5 km

(90%-confidence). The dark and light shaded areas show the 90%-confidence and 99%-confidence constraints of the RNS measurement,
respectively. The mass measurement of PSR J1614-2230 is shown as the horizontal band (Demorest et al. 2010). “Normal matter” EoSs
are the colored solid lines. Other types of EoSs, such as the hybrid or quark-matter EoSs are included for comparison, with dashed lines.
As mentioned in Section 5, the present analysis only places constraints on the “normal matter” EoSs since they are the only family of EoSs
included in our assumptions. Among them, only the very soft dEoSs (such as WFF1, Wiringa et al. 1988) are consistent with the radius
obtained here. The EoS are obtained from Lattimer & Prakash (2001, 2007).

distribution, i.e., with the fewest assumptions, that can
be produced. Also, the progressive relaxation of the as-
sumptions throughout the analysis demonstrated that no
unexpected behavior was present in the final MNS–RNS
distributions of Run #7 and that the resulting low-value
of RNS was not affected by systematics.
Previous works reported low values of NS radii, but

these measurements have high uncertainties due to low
S/N, leading to poorly constrainedRNS andMNS (e.g., in
NGC 2808, Webb & Barret 2007; Servillat et al. 2008).
Another qLMXB in NGC 6553 was identified with a
small radius, RNS = 6.3+2.3

−0.8 km (90%-confidence) for
MNS = 1.4M⊙ (Guillot et al. 2011b). However, low-
S/N Chandra observations demonstrated that the XMM
spectra of the source was affected by hard X-ray contami-
nation from a marginally resolved nearby source. Higher-
S/N observations with Chandra are necessary to confirm
the qLMXB classification and produce the uncontami-
nated spectrum necessary for its use in the present anal-
ysis.
In addition to qLMXB RNS measurements, low radii

were found from the analysis of photospheric radius ex-
pansion type-I X-ray bursts. A review of the method
used to determine RNS from these sources can be found
in the literature (Özel 2006; Suleimanov et al. 2011b).
The LMXBs EXO 1745-248, 4U 1608-52, and 4U 1820-
30 were found to have respective radii in the 2σ ranges
RNS = [7.5 − 11.0] km (Özel et al. 2009), RNS = [7.5 −
11.5] km (Güver et al. 2010a) and RNS = [8.5 − 9.5] km
(Güver et al. 2010b), respectively. While these results
are on a par with what is found in this paper, controversy
emerged with the realization that the analysis presented
in the cited works was not internally consistent because
the most probable observables (from Monte-Carlo sam-

pling) led to imaginary masses and radii (Steiner et al.
2010). Relaxing the assumption that the photospheric
radius equals the physical radius RNS at touchdown led
to real-valued solutions of MNS and RNS, and to larger
upper limits for the radius. Furthermore, it is argued
in a later work that the short bursts from EXO 1745-
248, 4U 1608-52 and 4U 1820-30 are not appropriate for
such analysis because the post-burst cooling evolution
of these sources does not match the theory of passively
cooling NSs (Suleimanov et al. 2011a). Therefore, the
MNS–RNS constraints from type I X-ray bursts should
be considered with these results in mind.
More recently, distance independent constraints in

MNS–RNS space were produced from the analysis
of the sub-Eddington X-ray bursts from the type I
X-ray burster GS 1826-24 (Zamfir et al. 2012). That
analysis, performed for a range of surface gravities
(log10 (g) = 14.0, 14.3, 14.6) and a range of H/He abun-
dances (0.01 Z⊙, 0.1 Z⊙ and Z⊙) led to radii RNS ∼<
11.5 km. While distance-independent, the results are
highly influenced by the atmosphere composition and
metallicity. For pure He composition, the upper limit
of RNS becomes RNS ∼< 15.5 km (Zamfir et al. 2012).
Finally, the multiwavelength spectral energy distri-

bution of the isolated neutron star RX J185635-3754
was analyzed to produce small values of RNS and MNS
with no plausible dEoS consistent with these values:
RNS ∼ 6 km and MNS ∼ 0.9M⊙ for d = 61 pc
(Pons et al. 2002). A recent distance estimation to the
source d = 123+11

−15 pc (Walter et al. 2010) led to revised
values: RNS = 11.5±1.2 km and MNS = 1.7±1.3M⊙
(Steiner et al. 2012). While this result is consistent with
the RNS measurement obtained in this paper and with
the other works reporting low-RNS values, it has to

Figure adapted from 
Guillot et al (2014)

Guillot et al (2014) Steiner et al, Heinke et al  (2014)

Chandra XMM Hubble
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Neutron Matter and Symmetry Energy Nuclear Symmetry Energy

Defined as the di↵erence between energies of pure neutron matter
(x = 0) and symmetric (x = 1/2) nuclear matter.

S(⇢) = E (⇢, x = 0)� E (⇢, x = 1/2)

Expanding around the saturation density
(⇢s) and symmetric matter (x = 1/2)

E (⇢, x) = E (⇢, 1/2)+(1�2x)2S2(⇢)+. . .

S2(⇢) = Sv +
L
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Sv ' 31 MeV, L ' 50 MeV

C. Fuchs, H.H. Wolter, EPJA 30(2006) 5
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symmetry energy

Connections to pure neutron matter:

E (⇢s , 0) ⇡ Sv + E (⇢s , 1/2) ⌘ Sv � B , p(⇢s , 0) = L⇢s/3

Neutron star matter (in beta equilibrium):
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Simplest parameterization to characterize the extrapolation 
in isospin and baryon density. !

To get from nuclei to neutron stars:   
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Symmetry Energy, Experiment & Radius Symmetry energy and pressure of neutron matter 
neutron matter band predicts 
symmetry energy Sv and 
its density derivative L 
 
comparison to experimental 
and observational constraints 
Lattimer, Lim, ApJ (2012), EPJA (2014) 

 
neutron matter constraints 
H: Hebeler et al. (2010) 
G: Gandolfi et al. (2011)  

provide tight constraints! 
 
combined with Skyrme EDFs 
predicts neutron skin 
208Pb: 0.182(10) fm 
48Ca:  0.173(5) fm 
Brown, AS, PRC (2014) 

Th
eo
ry

 correlate S & L.  

Neutron skin of 208Pb 
probes neutron matter energy/pressure, 
neutron matter band predicts 
neutron skin of 208Pb: 0.17±0.03 fm (±18% !) 
Hebeler, Lattimer, Pethick, AS, PRL (2010) 
 
 

in excellent agreement with extraction from complete E1 response 
0.156+0.025-0.021 fm 
  
 
 
 
PREX: neutron skin from parity-violating electron-scattering at JLAB 
electron exchanges Z-boson, couples preferentially to neutrons 
goal II: ±0.06 fm 

Figure Courtesy: Lattimer (2014)

0.168± 0.022 fm

0.156+0.025
�0.021 fm

0.34+0.15
�0.17 fmPREX:

 αD !

(Tamii et al.) 

208Pb rskin

Theory:

Nuclear measurements:

nuclear masses
neutron skin
dipole polarizability

heavy-ion phenomenology
giant-dipole resonances 
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Neutron Star radius is sensitive to L. 
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giant-dipole resonances 



Many Body Theory for Neutron Matter



Many Body Theory for Neutron Matter

two-body nucleon-
nucleon potential is 
well constrained by 
scattering data. 



three-neutron potential 
is not well constrained 
by nuclear data (yet). 
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three-neutron potential 
is not well constrained 
by nuclear data (yet). 

Many Body Theory for Neutron Matter

two-body nucleon-
nucleon potential is 
well constrained by 
scattering data. 

E(⇢n, ⇢p) : Energy per particle

Quantum 

Many-Body 


Theory: 
Quantum Monte Carlo



Nucleon-Nucleon Potential

Potential is not unique.!
!
Potentials with different 
short-distance behavior can  
fit low-energy NN phase 
shifts.

Vij =
X

p

vp(rij) O
p
ij

Intricate spin, isospin and 
tensor structure.

Interaction is scale 
dependent:



Phenomenological Three-Nucleon Force

We know it exists ...  but	

•Its magnitude depends on the 
renormalization scheme and the 
specific choice of the 2-body potential.  	

•Difficult to constrain full structure 
from expt. 	

•High quality 2-body potentials 
require relatively large 3-body forces.   

+ ..........short-range	

r < 0.5 fm



Hierarchy and Effective Field Theory: !
Chiral NN & NNN Potentials

2N LO

N LO3

NLO

LO

3N force 4N force2N force

)LJXUH ��� 'LDJUDPV WKDW JLYH ULVH WR QXFOHDU IRUFHV LQ &K()7 EDVHG RQ :HLQEHUJ¶V SRZHU FRXQWLQJ�
6ROLG DQG GDVKHG OLQHV GHQRWH QXFOHRQV DQG SLRQV� UHVSHFWLYHO\� 6ROLG GRWHV� ILOOHG FLUFOHV DQG ILOOHG
VTXDUHV DQG FURVVHG VTXDUHV UHIHU WR YHUWLFHV ZLWK ∆i = 0, 1, 2 DQG 4� UHVSHFWLYHO\�

7KH TXDQWLW\ κi ZKLFK HQWHUV WKLV H[SUHVVLRQ LV QRWKLQJ EXW WKH FDQRQLFDO ILHOG GLPHQVLRQ RI D YHUWH[ RI
W\SH i �XS WR WKH DGGLWLRQDO FRQVWDQW −4� DQG JLYHV WKH LQYHUVH PDVV GLPHQVLRQ RI WKH FRUUHVSRQGLQJ
FRXSOLQJ FRQVWDQW� ,Q IDFW� WKLV UHVXOW FDQ EH REWDLQHG LPPHGLDWHO\ E\ FRXQWLQJ LQYHUVH SRZHUV RI WKH
KDUG VFDOH Λχ UDWKHU WKDQ SRZHUV RI WKH VRIW VFDOH Q �ZKLFK LV� RI FRXUVH� FRPSOHWHO\ HTXLYDOHQW��
,QGHHG� VLQFH WKH RQO\ ZD\ IRU WKH KDUG VFDOH WR EH JHQHUDWHG LV WKURXJK WKH SK\VLFV EHKLQG WKH /(&V�
WKH SRZHU ν LV MXVW WKH QHJDWLYH RI WKH RYHUDOO PDVV GLPHQVLRQ RI DOO /(&V� 7KH DGGLWLRQDO IDFWRU −2
LQ (T� ������� LV D FRQYHQWLRQ WR HQVXUH WKDW WKH FRQWULEXWLRQV WR WKH QXFOHDU IRUFH VWDUW DW ν = 0�
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• A potential based on pion 

exchanges, contact interactions 
and their  derivates. !
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long and short range physics) 
allows for a systematic 
parametrization of short-
distance physics - momentum 
expansion.!
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and higher dimension 
operators.  
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QMC Predictions & 3N Forces

QMC correlates S & L. !

Measuring both S & L 
with error ~ 1 MeV 
would be useful.   
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Figure 4. The QMC equation of state of neutron matter for various Hamiltonians. The red (lower) curve is
obtained by including the NN (Argonne AV80 ) alone in the calculation, and the black one is obtained by adding
the Urbana IX three-body force. The green and blue bands correspond to EoSs giving the same Esym (32 and
33.7 MeV respectively), and are obtained by using several models of three-neutron force. In the inset we show
the value of L as a function of Esym obtained by fitting the EoS. The figure is taken from Ref. [23].

models giving the same symmetry energy at saturation produce an uncertainty in the EoS of about 20
MeV. The EoS obtained using QMC can be conveniently fit using the following functional [22]:

E(⇢) = a
 
⇢

⇢0

!↵
+ b

 
⇢

⇢0

!�
, (4)

where E is the energy per neutron, ⇢0 = 0.16 fm�3, and a, b, ↵ and � are free parameters. The
parametrizations of the EoS obtained from di↵erent nuclear Hamiltonians is given in Ref. [23].

At ⇢0 symmetric nuclear matter saturates, and we can extract the value of Esym and L directly from
the pure neutron matter EoS. The result of fitting the pure neutron matter EoS is shown in the inset of
Fig. 4. The error bars are obtained by taking the maximum and minimum value of L for a given Esym,
and the curves obtained with NN and NN+UIX are thus without error bars. From the plot it is clear
that within the models we consider, the correlation between L and Esym is linear and quite strong.

6 Connection to Neutron Star Masses and Radii

Neutron stars, unlike planets, are expected to be compositionally uniform, in which case their radius
is determined principally by their mass; to a good approximation all neutron stars lie on a universal
mass-radius M�R curve. When the EoS of the neutron star matter has been specified, the structure of
an idealized spherically-symmetric neutron star model can be calculated by integrating the Tolman-
Oppenheimer-Volko↵ (TOV) equations.

S (MEV)

S

For 𝜌 < 2 𝜌0 : 3-body contribution is small but important. !
!
A large cancellation between the kinetic energy and !
two-body (attraction) potential energy. !

Gandolfi, Carlson, Reddy (2012)
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neutron star mass and radius obtained without 3n interaction and the black curve is one for

which the 3n is very strong with Esym = 35.1 MeV corresponding to the original Urbana IX 3n
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Converging on the EoS and Radius  

MBPT:  Chiral Interactions Quantifying 
uncertainties due to 
the interaction and 
many-body 
approximations.  

With implications 
for NS radius: !
R = 12 ± 2 km 

Neutron star radius constraints 

uncertainty from many-body forces and general extrapolation 
 
 

 
   
 
 
 
 
 
 
 
 
 
constrains neutron star radius: 9.7-13.9 km for M=1.4 Msun (±18% !) 
 

consistent with extraction from X-ray burst sources Steiner et al. (2010) 
provides important constraints for EOS for core-collapse supernovae 
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FIG. 2. (Color online) Mass-radius relation for the EoS with
three-neutron interactions corresponding to the bands for dif-
ferent E

sym

shown in Fig. 1. The intersections with the orange
lines roughly indicate central densities realized in these stars.

for the hydrostatic structure of a spherical non rotating
star using the QMC equation of state for neutron matter
[30, 31]. The QMC EoS we use is for ⇢ � ⇢

crust

= 0.08
fm�3. Below this density we use the EoS of the crust
obtained in earlier works in Refs. [32] and [33].

The neutron star mass-radius predictions are obtained
by varying the 3n force and are shown in Fig. 2. The
striking feature is the estimated error in the neutron star
radius with a canonical mass of 1.4 M

solar

. The uncer-
tainty in the measured symmetry energy of ±2 MeV leads
to an uncertainty of about 3 km for the radius, while the
uncertainties in the short-distance structure of the 3n
force predicts a radius uncertainty of <⇠ 1 km. The dif-
ferent bands of Fig. 2 correspond to the EoS of Fig. 1
with the same colors, giving di↵erent values of E

sym

.
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radius for any neutron star with mass greater than 1.2M
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and for a neutron star with M = 1.4M
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, respectively.

The central density of stars with M >⇠ 1.5M
solar

are
larger than 3⇢

0

. At these higher densities, e↵ects such as
relativistic corrections to the kinetic energy, retardation

in the potential, and four- and higher body forces become
important. Consequently, non-relativistic models violate
causality and predict a sound speed cs =

p
@p/@✏>⇠ c for

⇢ ' (4� 5)⇢
0

. To overcome this deficiency we adopt the
strategy suggested in Ref. [34] and replace the EoS above
a critical density ⇢c by the maximally sti↵ or causal EoS
given by p(✏) = c2✏ � ✏c, where p is the pressure, ✏ is
the energy density, c is the speed of light and ✏c is a
constant. This EoS is maximally sti↵ and predicts the
most rapid increase of pressure with energy density with-
out violating causality. The constant ✏c is the parameter
that determines the discontinuity in energy density be-
tween the low- and high-density equations of state. Our
choice of ✏c ensures that the energy density is continuous
and provides an upper bound on both the radius and the
maximum mass of the neutron star.

Figure 3 shows how the bounds on the maximum ra-
dius and mass of the neutron star vary with our choice of
the critical density ⇢c. It also illustrates that the bounds
provide useful constraints only when the EoS is known up
to (2� 3)⇢

0

. In Ref. [35] bounds on the radius were de-
rived by using an EoS of neutron matter calculated up to
⇢
0

with specific assumptions about polytropic equations
of state at higher densities. Our upper bounds are model
independent and show that the radius of a 1.4M

solar

neu-
tron star can be as large as 16 km if ⇢c = ⇢

0

. To obtain a
tighter bound the equation of state between 1⇢

0

and 2⇢
0

is important. The red, green, blue and black curves are
predictions corresponding to the 3n interaction strength
fit to E

sym

= 30.5, 32.0, 33.7 and 35.1 MeV, respectively.
We also note that these bounds do not change much for
⇢c >⇠ 4⇢

0

because the QMC EoS is already close to being
maximally sti↵ in this region. These upper bounds pro-
vide a direct relation between the experimentally measur-
able nuclear symmetry energy and the maximum possible
mass and radius of neutron stars.

To summarize, we predict that the correlation between
the symmetry energy and its derivative at nuclear den-
sity is nearly independent of the detailed short-range 3n
force once its strength is tuned to give a particular value
of E

sym

. Consequently, in our model one short-distance
parameter AR completely determines the behavior of the
EoS. At higher density, the sensitivity to short-distance
behavior of the 3n interaction translates to an uncer-
tainty of about 1 km for the neutron star radius with
mass M = 1.4M

solar

. The uncertainty at high density
due to a poorly constrained symmetry energy is larger,
' 3 km. Within our model we predict that neutron star
radii are in the 10 � 13 km range for nuclear symmetry
energy in the range 32� 34 MeV. If nuclear experiments
can determine that E

sym

 32 MeV, QMC predicts that
L <⇠ 45 MeV at nuclear density, and for neutron stars it
predicts M

max

< 2.2M
solar

and R < 12 km for a neutron
star with M = 1.4M

solar

. The relationship between the
symmetry energy and its density dependence is exper-
imentally relevant, and its implications on the neutron
star mass radius relationship are subject to clear obser-
vational tests.

QMC:  Local Interactions 

Complete N3LO calculation of neutron matter 
first complete N3LO result Tews, Krüger, Hebeler, AS (2013) 

includes uncertainties from NN, 3N (dominates), 4N  

Tews, Kruger, Hebeler, 
Schwenk (2013)

MBPT:  
Chira

l In
teractio

ns 

Roggero, Mukherjee, Pederiva (2014)

2

Here, H is the Hamiltonian, ET is an energy shift used
to keep the norm of the wave function approximately
constant, and τ is a finite step in ‘imaginary’ time τ = it.
This process is carried out stochastically in a many-

body Hilbert space that is spanned by all Slater deter-
minants that can constructed from a finite set of single
particle (sp) basis states. In this work, we use the eigen-
states of momentum and the z components of spin and
isospin as the sp basis. The calculations are performed
in a box containing A nucleons of size L3 = A/ρ with
periodic boundary conditions. The size of the box L is
fixed by the density ρ of the system. The finite size of the
box requires the sp states to be restricted on a lattice in
momentum space with a lattice constant l = 2π/L. A fi-
nite sp basis is chosen by imposing a “basis cutoff” kmax,
so that only those sp states with k2 ≤ k2max are included.
A sequence of calculations with increasingly large values
of kmax are performed till convergence is reached.
Sampling of new states can be performed under the

condition that the matrix elements of the propagator,
P , are always positive semi-definite. For fermions inter-
acting with a realistic potential this condition is never
fullfilled. This gives rise to the so-called sign-problem,
which is usually circumvented by using a guiding wave
function to constrain the random walk to a subsector of
the full many-body Hilbert space in which the sampling
procedure is well defined. This restriction of the ran-
dom walk introduces an approximation which is similar
to the fixed-node/fixed-phase approximation commonly
used in continuum QMC. As explained in Refs. 12 and
13, we use the coupled cluster double (CCD) type wave
functions as the guiding wave functions. As a result, the
CIMC method provides an interesting synthesis of QMC
methods and CC theory.
We were able to extend the CIMC method to the case

of complex hermitian Hamiltonians, in a way that pre-
serves all the favorable properties of CIMC viz., (i) the
ground state energy estimate is a rigorous upper bound
on the true ground state energy; (ii) this upper bound is
tighter than that provided by the guiding wave function;
(iii) there is no bias due to finite (imaginary) time step,
τ . Note that, none of the above properties (i-iii) hold for
the nuclear GFMC or the AFDMC methods. Details of
this generalization will be provided elsewhere.
Equation of state and chemical potentials.— In Fig. 1,

we show our results for the EoS (energy per particle vs
density) of pure neutron matter. Energies refer to a box
containing 66 neutrons with periodic boundary condi-
tions. For periodic boundary conditions, finite size (shell)
effects are minimal for the shell closures at 14 and 66 (see,
e.g. Ref. 16). For comparison, we have also included the
variational APR EoSs (two body - AV18 and two plus
three body - AV18+UIX interactions) [17], the AFDMC
EoS (two body - AV8′ interaction) [18], and the NL3 EoS
[19].
As mentioned earlier, in CIMC, successive calculations
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FIG. 1. (Color online) The EoS of pure neutron matter: red
squares - our results (66 neutrons), brown circles - AFDMC
EoS with the 2b AV8’ [18], blue dashed line - APR EoS with
the 2b AV18 [17], blue solid line - APR EoS with the 2b AV18
+ 3b UIX [17], black dashed dotted line - NL3 EoS [19]. The
inset shows the convergence of our energies as a function of
kmax at ρ = 0.08 fm−3 for 14 (black squares) and 66 (blue
circles) particles. The dotted lines are a guide to the eye.

with larger sp basis sizes need to be performed till con-
vergence. In the inset of Fig. 1 we plot the energy per
particle as a function of kmax at ρ = 0.08 fm−3 for 14 and
66 particles. We deem the CIMC calculations for have
converged when the difference in the energy estimate be-
tween successive values of kmax is less than the statistical
error (typically ∼ 10 − 25 KeV at convergence). For all
the densities considered in this work we observe a smooth
convergence in the CIMC calculations as a function of
kmax.
The nucleon chemical potentials in dense matter play

a crucial role in determining the proton fraction at beta
equilibrium, and consequently the equation of state and
the cooling mechanism in neutron stars. In Fig. 2, we
show the proton and the neutron chemical potentials in
pure neutron matter. We calculate the neutron chemical
potential (µn = ρ∂(E/N)/∂ρ + E/N) by numerical dif-
ferention of the EoS. The proton chemical potential (µp)
is calculated from the binding energy of one extra pro-
ton in pure neutron matter. The calculations for µp were
performed for 14 neutrons + 1 proton; however, we also
checked in a few cases that the results for the 66 neutrons
+ 1 proton case are within 2%.
Most computer simulations of supernovae use phe-

nomenological EoSs based typically on the liquid drop
model, the most popular being the Lattimer-Swesty EoS
[20], or on relativistic mean field theory [21, 22]. As a
prototype of such an EoS we have included the results
from the NL3 EoS [21] in Figs. 1 and 2.
For µp all the calculations are reasonably consistent

with each other. For the EoS and µn, however, only
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FIG. 3: (Color online) Occupation probabilities of neutron
matter as a function of momentum for selected densities rang-
ing from n = 0.011 to 0.088 fm−3 arising from the evolution
Hamiltonian Ĥev.

orbitals. The expectation values of the evolution Hamil-
tonian and the chiral nuclear potential at imaginary time
τ = 0 are then simply the lattice Hartree-Fock ener-
gies. Deviations between the continuum Hartree-Fock
predictions and those of the lattice were found to be at
most a few percent when the particle number corresponds
to closed shells in the free Fermi gas model on the lat-
tice. In Fig. 2 we show the evolution in imaginary time
of ⟨ψ(τ)|Ĥev|ψ(τ)⟩ and ⟨ψ(τ)|ĤEFT|ψ(τ)⟩ for the lowest
density n = 0.011 fm−3. Note that the left- and right-
hand wavefunctions are evolved separately. Typically
we observe a very good convergence for imaginary times
about τ ≈ 0.1MeV−1, which requires about 300 imagi-
nary time steps. Apart from a nearly constant shift, the
imaginary-time dependence for both expectation values
is very similar, indicating that our fitting procedure in-
deed produces the evolution potential, which correctly
captures global features of the chiral potential.

Our calculation procedure gives us access to the wave
function in both the coordinate and momentum repre-
sentation. In Fig. 3 we show the momentum distribution
associated with the evolution Hamiltonian Ĥev for pure
neutron matter at selected densities. As the density in-
creases and the evolution Hamiltonian weakens, the de-
pletion in the occupation probability at low momenta is
reduced. In all simulations the single-particle occupation
probabilities for the highest energy states is below one
percent.

In Fig. 4 we present AFQMC results for the equation of
state of pure neutron matter. Evaluating only the chiral
two-nucleon force in the correlated ground state (shown
in red solid circles), we find that the equation of state
is consistent with previous quantum Monte Carlo simu-
lations employing N2LO chiral 2N interactions [17, 18].
Computing also the expectation value of the N2LO three-
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FIG. 4: (Color online) Equation of state of pure neutron
matter calculated using AFQMC with the N3LO chiral two-
nucleon potential (red circles) plus the N2LO three-nucleon
contribution (blue diamonds). For comparison, the gray open
circles and squares, respectively, show the results [17, 18] of re-
cent QMC calculations with N2LO chiral nuclear forces with-
out three-body interactions. Upper-left inset: contribution
to the energy per particle from different orders in the chi-
ral expansion (“+” and “−” refer to repulsive and attractive
components, respectively). Lower-right inset: comparison be-
tween the expectation values of Ĥev and ĤEFT in the corre-
lated many-body ground state.

nucleon force over the evolved wavefunction introduces
significant additional repulsion above n = 0.02 fm−3, as
seen from the solid blue diamonds in Fig. 4. Differences
between the expectation value of the evolution Hamil-
tonian and the full chiral nuclear 2N + 3N interaction
(which can be regarded as the first-order correction to
the energy in perturbation theory) are small as shown in
the lower-right inset to Fig. 4. In the upper-left inset,
we show the expectation value of the chiral Hamiltonian
decomposed according to the chiral order.

In the above calculations we translate the lattice re-
sults to the continuum limit with the following proce-
dure: i) from the lattice simulations we extract the di-

mensionless quantity
⟨ψ|Ô|ψ⟩
⟨ψ0|Ô|ψ0⟩

, where ψ is the ground

state of the evolution Hamiltonian, ψ0 is the free Fermi
gas wave function, and both expectation values are com-
puted on the lattice, ii) to convert the lattice result into
a dimensionful quantity we multiply by ⟨ψ0|Ô|ψ0⟩(cont.),
computed in the continuum limit.

Conclusions.— We have presented calculations of the
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Matter at Supra-nuclear Density

Rules out strong first-order 
phase transitions. But,!
• How are hyperons 

suppressed ? !
• When and how do quarks 

emerge ? 

2 solar mass star poses serious 
challenges: 

 from LQCD
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been performed. In this case the additional repulsion
provided by the model (II) pushes ⇢th⇤ towards a density
region where the contribution coming from the hyperon-
nucleon potential cannot be compensated by the gain in
kinetic energy. It has to be stressed that (I) and (II) give
qualitatively similar results for hypernuclei. This clearly
shows that an EoS constrained on the available binding
energies of light hypernuclei is not sufficient to draw any
definite conclusion about the composition of the neutron
star core.

The mass-radius relations for PNM and HNM obtained
by solving the Tolman-Oppenheimer-Volkoff (TOV)
equations [47] with the EoS of Fig. 1 are shown in Fig. 2.
The onset of ⇤ particles in neutron matter sizably reduces
the predicted maximum mass with respect to the PNM
case. The attractive feature of the two-body ⇤N interac-
tion leads to the very low maximum mass of 0.66(2)M�,
while the repulsive ⇤NN potential increases the pre-
dicted maximum mass to 1.36(5)M�. The latter result
is compatible with Hartree-Fock and Brueckner-Hartree-
Fock calculations (see for instance Refs. [2–5]).

M
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Figure 2. (Color online) Mass-radius relations. The key is
the same of Fig. 1. Full dots represent the predicted max-
imum masses. Horizontal bands at ⇠ 2M� are the ob-
served masses of the heavy pulsars PSR J1614-2230 [18] and
PSR J0348+0432 [19]. The grey shaded region is the excluded
part of the plot due to causality.

The repulsion introduced by the three-body force plays
a crucial role, substantially increasing the value of the
⇤ threshold density. In particular, when model (II) for
the ⇤NN force is used, the energy balance never favors
the onset of hyperons within the the density domain that
has been studied in the present work (⇢  0.56 fm�3).
It is interesting to observe that the mass-radius relation
for PNM up to ⇢ = 3.5⇢0 already predicts a NS mass
of 2.09(1)M� (black dot-dashed curve in Fig. 2). Even
if ⇤ particles would appear at higher baryon densities,
the predicted maximum mass is consistent with present

astrophysical observations.

In this Letter we have reported on the first Quantum
Monte Carlo calculations for hyperneutron matter, in-
cluding neutrons and ⇤ particles. As already verified
in hypernuclei, we found that the three-body hyperon-
nucleon interaction dramatically affects the onset of hy-
perons in neutron matter. When using a three-body
⇤NN force that overbinds hypernuclei, hyperons appear
around twice saturation density and the predicted max-
imum mass is 1.36(5)M�. By employing a hyperon-
nucleon-nucleon interaction that better reproduces the
experimental separation energies of medium-light hyper-
nuclei, the presence of hyperons is disfavored in the neu-
tron bulk at least until ⇢ = 0.56 fm�3 and the lower
limit for the predicted maximum mass is 2.09(1)M�.
Therefore, within the ⇤N model that we have consid-
ered, the presence of hyperons in the core of the neutron
stars cannot be satisfactory established and thus there is
no clear incompatibility with astrophysical observations
when lambdas are included. We conclude that in order to
discuss the role of hyperons - at least lambdas - in neu-
tron stars, the ⇤NN interaction cannot be completely
determined by fitting the available experimental energies
in ⇤ hypernuclei. In other words, the ⇤-neutron-neutron
component of the ⇤NN will need additional theoret-
ical investigation and a substantial additional amount
of experimental data. In particular, there are some
features of the hyperon-nucleon interaction (⇤-neutron-
neutron channels, spin-orbit contributions) which might
be efficiently constrained only by experiments involving
highly asymmetric hypernuclei and/or excitation of the
hyperon. We believe that our conclusions will not change
qualitatively if other hyperons and/or a v⇤⇤ are included
in the calculation.
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The low-energy n⌃� interactions determine, in part, the role of the strange quark in dense matter,
such as that found in astrophysical environments. The scattering phase shifts for this system
are obtained from a numerical evaluation of the QCD path integral using the technique of lattice
QCD. Our calculations, performed at a pion mass of m⇡ ⇠ 389 MeV in two large lattice volumes,
and at one lattice spacing, are extrapolated to the physical pion mass using e↵ective field theory.
The interactions determined from QCD are consistent with those extracted from hyperon-nucleon
experimental data within uncertainties, and strengthen theoretical arguments that the strange quark
is a crucial component of dense nuclear matter.

The interactions between hyperons and nucleons are im-
portant for understanding the composition of dense nu-
clear matter. In high-density baryonic systems, the large
values of the Fermi energies may make it energetically
advantageous for some of the nucleons to transform into
hyperons via the weak interactions, with the increase in
rest mass being more than compensated for by the de-
crease in combined Fermi energy of the baryon-lepton
system. This is speculated to occur in the interior of neu-
tron stars, but a quantitative understanding of this phe-
nomenon depends on knowledge of the hyperon-nucleon
(YN) interactions in the medium. In this letter we use
n⌃� scattering phase shifts in the 1S0 and 3S1 spin-
channels calculated with Lattice QCD (LQCD) to quan-
tify the energy shift of the ⌃� hyperon in dense neu-
tron matter, as might occur in the interior of a neutron
star. Our results strongly suggest an important role for
strangeness in such environments.

Precise nucleon-nucleon (NN) interactions constrained
by experiment and chiral symmetry, together with nu-
merically small but important three-nucleon interactions,
have served as input to refined many-body techniques for
studying the structure of nuclei, such as Green-function
Monte-Carlo [1], the No-Core Shell Model [2], or lattice
e↵ective field theory [3], which have led to remarkably
successful calculations of the ground states and excited
states of light nuclei, with atomic number A < 14. By
contrast, the YN potentials, which are essential for a first-

principles understanding of the hypernuclei and dense
matter, are only very-approximately known. Therefore,
gaining a quantitative understanding of YN interactions
— on a par with knowledge of the NN interactions —
through experimental and LQCD methods, is a funda-
mental goal of nuclear science.
Existing experimental information about the YN in-

teraction comes from the study of hypernuclei [4, 5], the
analysis of associated ⇤-kaon and ⌃-kaon production in
NN collisions near threshold [6–11], hadronic atoms [12],
and from charge-exchange production of hyperons in
emulsions and pixelated scintillation devices [13]. There
are only a small set of cross-section measurements of the
YN processes, and not surprisingly, the extracted scatter-
ing parameters are not accurately known. The potentials
developed by the Nijmegen [14, 15] and Jülich [16–18]
groups are just two examples of phenomenological mod-
els based on meson exchange, but the couplings in such
models are not completely determined by the NN interac-
tion and are instead obtained by a fit to the available YN
data. In Refs. [14, 15], for example, six di↵erent models
are constructed, each describing the available YN cross-
section data equally well, but predicting di↵erent values
for the phase shifts. E↵ective field theory (EFT) de-
scriptions have also been developed [19–23] and have the
advantage of being model independent.
In the absence of precise experimental measurements,

LQCD calculations can be used to constrain the YN in-
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FIG. 1: LQCD-predicted 1S0 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.
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FIG. 2: LQCD-predicted 3S1 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

tor, thereby determining the LO interaction, including
energy-independent and local potentials, wavefunctions
and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the 1S0 n⌃�

channel are consistent with the SU(3) symmetry expecta-
tions. At m⇡ ⇠ 389 MeV, using a volume extrapolation
as discussed above, we find that this channel has a bound
state, with binding energy B = 25± 9.3± 11 MeV. The
quality of the LQCD data in the 1S0 n⌃� channel is com-
parable to that of its 27-plet partner ⌅�⌅�, analyzed in
detail in Ref. [30] (see also [45]). In the EFT, the coe�-
cient of the LO contact operator in this channel is deter-
mined by tuning it to reproduce the LQCD-determined
binding energy. We find that this channel becomes un-
bound at m⇡

<⇠ 300 MeV, in agreement with Ref. [46],
which constrained the LO contact operator using exper-
imental data. In Fig. 1, we show the predicted 1S0 n⌃�

phase shift at the physical pion mass — (dark, light) blue
bands correspond to (statistical, systematic) uncertain-
ties — and compare with the EFT constrained by ex-
perimental data [23], the Nijmegen NSC97f model [14],
and the Jülich ’04 model [18]. The systematic uncer-
tainties on our predictions include those arising from the
LQCD calculation (see [45]) as well as estimates of omit-

ted higher-order e↵ects in the EFT.
The 3S1-3D1 n⌃� coupled channel is found to be highly

repulsive in the s-wave at m⇡ ⇠ 389 MeV, requiring in-
teractions with a hard repulsive core of extended size.
Such a core, if large enough, would violate a condition re-
quired to use Lüscher’s relation, namely R ⌧ L/2 where
R is the range of the interaction. We have determined
the EFT potential directly by solving the 3-dimensional
Schrödinger equation in finite volume to reproduce the
energy levels obtained in the LQCD calculations. The re-
pulsive core is found to be large, and formally precludes
the use of Lüscher’s relation, but both methods lead to
phase shifts that agree within uncertainties, indicating
that the exponential corrections to Lüscher’s relation are
small. In Fig. 2, we show the predicted 3S1 n⌃� phase
shift at the physical pion mass.
The n⌃� interactions presented here are the crucial

ingredient in calculations that address whether ⌃�’s ap-
pear in dense neutron matter. As a first step, and in order
to understand the competition between attractive and re-
pulsive components of the n⌃� interaction, we adopt a
result due to Fumi for the energy shift due to a static
impurity in a non-interacting Fermi system [47]:

�E = � 1

⇡µ

Z kf

0
dk k

h 3

2
�3S1

(k) +
1

2
�1S0

(k)
i
, (2)

where µ is the reduced mass in the n⌃� system. Us-
ing our LQCD determinations of the phase shifts, and
allowing for a 30% theoretical uncertainty, the resulting
energy shift and uncertainty band is shown in Fig. 3. At
neutron number density ⇢n ⇠ 0.4 fm�3, which may be
found in the interior of neutron stars, the neutron chem-
ical potential is µn ⇠ MN + 150 MeV due to neutron-
neutron interactions, and the electron chemical potential,
µe� ⇠ 200 MeV [48]. Therefore µn + µe� ⇠ 1290 MeV,
and consequently, if µ⌃� = M⌃+�E <⇠ 1290 MeV, that
is, �E <⇠ 100 MeV, then the ⌃�, and hence the strange
quark, will play a role in the dense medium. We find
using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at
⇢n = 0.4 fm�3. Corrections due to correlations among
neutrons are di�cult to estimate and will require many-
body calculations which are beyond the scope of this
study. Despite this caveat, the results shown in Fig. 3
indicate that the repulsion in the n⌃� system is inad-
equate to exclude the presence of ⌃�’s in neutron star
matter, a conclusion that is consistent with previous phe-
nomenological modeling (for a review, see Ref. [49]).

In this letter, we have presented the first LQCD predic-
tions for hypernuclear physics, the 1S0 and 3S1 n⌃� scat-
tering phase shifts shown in Fig. 1 and Fig. 2. While the
LQCD calculations have been performed at a single lat-
tice spacing, lattice-spacing artifacts are expected to be
smaller than the other systematic uncertainties. We an-
ticipate systematically refining the analysis presented in
this letter as greater computing resources become avail-
able. The n⌃� interaction is critical in determining the
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FIG. 1: LQCD-predicted 1S0 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.
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FIG. 2: LQCD-predicted 3S1 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

tor, thereby determining the LO interaction, including
energy-independent and local potentials, wavefunctions
and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the 1S0 n⌃�

channel are consistent with the SU(3) symmetry expecta-
tions. At m⇡ ⇠ 389 MeV, using a volume extrapolation
as discussed above, we find that this channel has a bound
state, with binding energy B = 25± 9.3± 11 MeV. The
quality of the LQCD data in the 1S0 n⌃� channel is com-
parable to that of its 27-plet partner ⌅�⌅�, analyzed in
detail in Ref. [30] (see also [45]). In the EFT, the coe�-
cient of the LO contact operator in this channel is deter-
mined by tuning it to reproduce the LQCD-determined
binding energy. We find that this channel becomes un-
bound at m⇡

<⇠ 300 MeV, in agreement with Ref. [46],
which constrained the LO contact operator using exper-
imental data. In Fig. 1, we show the predicted 1S0 n⌃�

phase shift at the physical pion mass — (dark, light) blue
bands correspond to (statistical, systematic) uncertain-
ties — and compare with the EFT constrained by ex-
perimental data [23], the Nijmegen NSC97f model [14],
and the Jülich ’04 model [18]. The systematic uncer-
tainties on our predictions include those arising from the
LQCD calculation (see [45]) as well as estimates of omit-

ted higher-order e↵ects in the EFT.
The 3S1-3D1 n⌃� coupled channel is found to be highly

repulsive in the s-wave at m⇡ ⇠ 389 MeV, requiring in-
teractions with a hard repulsive core of extended size.
Such a core, if large enough, would violate a condition re-
quired to use Lüscher’s relation, namely R ⌧ L/2 where
R is the range of the interaction. We have determined
the EFT potential directly by solving the 3-dimensional
Schrödinger equation in finite volume to reproduce the
energy levels obtained in the LQCD calculations. The re-
pulsive core is found to be large, and formally precludes
the use of Lüscher’s relation, but both methods lead to
phase shifts that agree within uncertainties, indicating
that the exponential corrections to Lüscher’s relation are
small. In Fig. 2, we show the predicted 3S1 n⌃� phase
shift at the physical pion mass.
The n⌃� interactions presented here are the crucial

ingredient in calculations that address whether ⌃�’s ap-
pear in dense neutron matter. As a first step, and in order
to understand the competition between attractive and re-
pulsive components of the n⌃� interaction, we adopt a
result due to Fumi for the energy shift due to a static
impurity in a non-interacting Fermi system [47]:

�E = � 1

⇡µ

Z kf

0
dk k

h 3

2
�3S1

(k) +
1

2
�1S0

(k)
i
, (2)

where µ is the reduced mass in the n⌃� system. Us-
ing our LQCD determinations of the phase shifts, and
allowing for a 30% theoretical uncertainty, the resulting
energy shift and uncertainty band is shown in Fig. 3. At
neutron number density ⇢n ⇠ 0.4 fm�3, which may be
found in the interior of neutron stars, the neutron chem-
ical potential is µn ⇠ MN + 150 MeV due to neutron-
neutron interactions, and the electron chemical potential,
µe� ⇠ 200 MeV [48]. Therefore µn + µe� ⇠ 1290 MeV,
and consequently, if µ⌃� = M⌃+�E <⇠ 1290 MeV, that
is, �E <⇠ 100 MeV, then the ⌃�, and hence the strange
quark, will play a role in the dense medium. We find
using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at
⇢n = 0.4 fm�3. Corrections due to correlations among
neutrons are di�cult to estimate and will require many-
body calculations which are beyond the scope of this
study. Despite this caveat, the results shown in Fig. 3
indicate that the repulsion in the n⌃� system is inad-
equate to exclude the presence of ⌃�’s in neutron star
matter, a conclusion that is consistent with previous phe-
nomenological modeling (for a review, see Ref. [49]).

In this letter, we have presented the first LQCD predic-
tions for hypernuclear physics, the 1S0 and 3S1 n⌃� scat-
tering phase shifts shown in Fig. 1 and Fig. 2. While the
LQCD calculations have been performed at a single lat-
tice spacing, lattice-spacing artifacts are expected to be
smaller than the other systematic uncertainties. We an-
ticipate systematically refining the analysis presented in
this letter as greater computing resources become avail-
able. The n⌃� interaction is critical in determining the
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SUPERNOVA AND NEUTRON STAR MERGERS 

•  Supernova: Neutrinos & nucleosynthesis	


• NS Mergers: Gravitational waves, radius, 
nucleosynthesis. 

Part II: Dynamics



Supernova Neutrinos
1500 km

3X107 km

10 km

Core collapse
tcollapse ~100 ms

Shock wave
Eshock~1051ergs

100 km
carry away  
~ 3 x 1053 ergs 

• The time structure of the neutrino signal depends on how 
heat is transported in the neutron star core. 


• The spectrum is set by scattering in a hot (T=3-6 MeV) and 
not so dense (1012-1013 g/cm3 ) neutrino-sphere. 

neutrinos 
diffuse out of 
the dense 
newly born 
neutron star Quasi-static  

~ 1 s  



Neutrino Emission Timescales & EoS. 

Convection driven by 
composition gradients 
can accelerate neutrino 
transport. 

!
Buoyancy of matter 
depends on the 
pressure of neutron 
matter - is sensitive to L 

neutrino  
diffusion

convection

Heat transport :  Neutrino diffusion + convection 

⌧di↵ ' R2

c �⌫
⇡ 3� 5 sDiffusion:

Convection:

Large L drives convection. 
Small L suppress it. 

Roberts, Cirigliano, Pons, Reddy, Shen, Woosley (2012)



Signatures of Convective Transport

Count rate in Super-Kamiokande for 
galactic supernova at 10 kpc.
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FIG. 2: Evolution of the entropy (top panels) and lepton frac-
tion (bottom panels) in a 1.6M⊙ rest mass PNS for the GM3
EoS (left panels) and the IU-FSU EoS (right panels). The
grayed regions are convectively unstable. The labels corre-
spond to the model times in seconds.

path. To take this into account, we introduce an effec-
tive short-range interaction in the spin channel through
the Migdal parameter, g′ [18]. The strength of this inter-
action is tuned to reproduce the spin-suscpetibitly of neu-
tron matter obtained from microscopic calculations [7].
For densities above nuclear saturation, the RPA causes a
significant enhancement of the mean free path relative to
the mean field approximation due to the repulsive nature
of the nuclear interaction at high density. This should be
considered as only a first approximation to the actual
response of the nuclear medium, as we only include sin-
gle particle-hole excitations and it has been shown that
multi-particle-hole excitations may be important in de-
termining the axial current component of the neutrino
opacity [21].

We now consider the evolution of the internal structure
of the PNS with convection and varying prescriptions for
the opacities. In figure 2, the evolution of the entropy
and electron fraction for the two equations of state are
shown. Over the first second in both models, convection
smoothes the entropy and lepton gradients in the outer
regions to a state close to neutral buoyancy. GM3 has
a slightly steeper entropy gradient because of its larger
E′

sym than IU-FSU. This results in a slightly larger neu-
trino luminosity at early times for GM3. As time pro-
gresses, convection steadily digs deeper into the core of
the PNS. For both EoSs, convection proceeds all the way
to the core by 15 seconds into the simulation, but it lasts
in the interior regions for a much longer period of time
for IU-FSU resulting in more rapid lepton depletion in
the core. More important to the neutrino signal, in GM3
convection ceases in the mantle by ∼ 5 seconds, whereas
convection in the mantle proceeds until ∼ 12 seconds in
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FIG. 3: Count rates as a function of time for a number of
1.6M⊙ PNS models. Inset: The integrated number of counts
from 100 ms to 1 s divided by the total number of counts
for t > 0.1 second on the horizontal axis, and the number of
counts for t > 3 seconds divided by the total number of counts
for t > 0.1 second. Symbol sizes correspond to various neu-
tron star masses ranging from 1.2M⊙ to 2.1M⊙. Colors corre-
spond to different values of the Migdal parameter increasing
as the colors lighten (g′ = 0.2, 0.6, 1.0), with the black points
being mean field results. The circles correspond to the GM3
EoS and the stars to the IU-FSU EoS.

IU-FSU. This difference can be directly attributed to the
difference in E′

sym between the two EoSs. As the mantle
contracts, the second term in equation 2 becomes increas-
ingly dominant and is eventually able to stabilize convec-
tion. The exact details of how convection proceeds will
depend on the initial conditions of the PNS. Still, qual-
itatively, increasing E′

sym will shut-off convection at an
earlier time.

The depth to which convection penetrates in the core
and how long convection proceeds in the core is depen-
dent upon the opacities as well as the EoS. When only
mean field effects on the opacities are considered (i.e.
when the neutrino mean free path is shorter), convection
does not proceed all the way to the center of the PNS in
the GM3 models. When RPA effects are included, con-
vection does proceed to the central regions of the core.
An increased diffusion rate allows the core to heat up and
deleptonize more rapidly, thereby decreasing the stabi-
lizing lepton gradients and increasing the de-stabilizing
entropy gradients.

Of course, variations in the convective evolution of the
PNS are only interesting to the extent they are poten-
tially observable in the neutrino emission from a nearby
supernova. In figure 3 the expected neutrino count rates
for a detector similar to Super Kamiokande-III are shown
for a number of PNS cooling models. We have assumed
a threshold energy of 7.5 MeV, a detector mass of 50 kt,
a detector efficiency above threshold of unity [14], and a
distance of 10 kpc to the supernova. Equipartition has

          

•Neutrino flux is enhanced. 

•Break in the light curve 
(when convection ends). 

•Fraction of events 
between 3-10 s provides 
good discrimination. 

Roberts, Cirigliano, Pons, Reddy, Shen, Woosley (2012)
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path. To take this into account, we introduce an effec-
tive short-range interaction in the spin channel through
the Migdal parameter, g′ [18]. The strength of this inter-
action is tuned to reproduce the spin-suscpetibitly of neu-
tron matter obtained from microscopic calculations [7].
For densities above nuclear saturation, the RPA causes a
significant enhancement of the mean free path relative to
the mean field approximation due to the repulsive nature
of the nuclear interaction at high density. This should be
considered as only a first approximation to the actual
response of the nuclear medium, as we only include sin-
gle particle-hole excitations and it has been shown that
multi-particle-hole excitations may be important in de-
termining the axial current component of the neutrino
opacity [21].

We now consider the evolution of the internal structure
of the PNS with convection and varying prescriptions for
the opacities. In figure 2, the evolution of the entropy
and electron fraction for the two equations of state are
shown. Over the first second in both models, convection
smoothes the entropy and lepton gradients in the outer
regions to a state close to neutral buoyancy. GM3 has
a slightly steeper entropy gradient because of its larger
E′

sym than IU-FSU. This results in a slightly larger neu-
trino luminosity at early times for GM3. As time pro-
gresses, convection steadily digs deeper into the core of
the PNS. For both EoSs, convection proceeds all the way
to the core by 15 seconds into the simulation, but it lasts
in the interior regions for a much longer period of time
for IU-FSU resulting in more rapid lepton depletion in
the core. More important to the neutrino signal, in GM3
convection ceases in the mantle by ∼ 5 seconds, whereas
convection in the mantle proceeds until ∼ 12 seconds in
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counts for t > 3 seconds divided by the total number of counts
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tron star masses ranging from 1.2M⊙ to 2.1M⊙. Colors corre-
spond to different values of the Migdal parameter increasing
as the colors lighten (g′ = 0.2, 0.6, 1.0), with the black points
being mean field results. The circles correspond to the GM3
EoS and the stars to the IU-FSU EoS.

IU-FSU. This difference can be directly attributed to the
difference in E′

sym between the two EoSs. As the mantle
contracts, the second term in equation 2 becomes increas-
ingly dominant and is eventually able to stabilize convec-
tion. The exact details of how convection proceeds will
depend on the initial conditions of the PNS. Still, qual-
itatively, increasing E′

sym will shut-off convection at an
earlier time.

The depth to which convection penetrates in the core
and how long convection proceeds in the core is depen-
dent upon the opacities as well as the EoS. When only
mean field effects on the opacities are considered (i.e.
when the neutrino mean free path is shorter), convection
does not proceed all the way to the center of the PNS in
the GM3 models. When RPA effects are included, con-
vection does proceed to the central regions of the core.
An increased diffusion rate allows the core to heat up and
deleptonize more rapidly, thereby decreasing the stabi-
lizing lepton gradients and increasing the de-stabilizing
entropy gradients.

Of course, variations in the convective evolution of the
PNS are only interesting to the extent they are poten-
tially observable in the neutrino emission from a nearby
supernova. In figure 3 the expected neutrino count rates
for a detector similar to Super Kamiokande-III are shown
for a number of PNS cooling models. We have assumed
a threshold energy of 7.5 MeV, a detector mass of 50 kt,
a detector efficiency above threshold of unity [14], and a
distance of 10 kpc to the supernova. Equipartition has

          

•Neutrino flux is enhanced. 

•Break in the light curve 
(when convection ends). 

•Fraction of events 
between 3-10 s provides 
good discrimination. 

Roberts, Cirigliano, Pons, Reddy, Shen, Woosley (2012)

w/o convection 
Small L


(soft)

Large L 

(stiff) 



Almudena  Arcones    (GSI & TU Darmstadt) 14ex  Workshop on Nuclear Astrophysics.   Ringberg, 10-15 March  2008

Nucleosynthesis conditions

Element abundances

Origin of heavy elements:

r-process, s-process, p-process, νp-process

r-process site candidates:

core-collapse supernova, neutron star 
mergers, accretion disks, jets, GRB, ...

r-process conditions:   Yn/Yseed↑

• short dynamical time scale (ms...s)

• electron fraction Ye ≈ 0.4

• high entropy (or high photon-to-baryon 
ratio)

Burbidge, Burbidge, Fowler, and Hoyle
(B2FH 1957)

nn > 1020 cm-3

�

Burbridge, Burbridge, Fowler & Hoyle 1957

Dense Matter, Neutrinos & Nucleosynthesis 

In extreme environments 
rapid neutron capture !
(r-process)!
on seed nuclei can 
produce heavy elements. !
!
Properties of dense 
matter and neutrinos 
influence !
where and how heavy 
elements are 
synthesized. !
!



Where does the r-process occur ? 
There is general consensus that it involves either one or 
two neutron stars.

• prompt explosion (Hillebrandt 1978, Hillebrandt et al. 1984)                                                                         

• neutrino-driven wind (Meyer et al. 1992, Woosley et al. 1994)

• shocked surface layers (Ning, Qian, Meyer 2007)

• neutrino-induced in He shells (Banerjee, Haxton, Qian 2011)

• jets (e.g., Winteler et al. 2012)

r-process in core-collapse supernovae? (B2FH 1957)

wind

proto-neutron star
• The one neutron star 

scenario: Neutrino driven 
wind in a core-collapse 
supernova. [Fragile]!

!
!

• The two neutron star 
scenario: Dynamical 
ejection of matter in binary 
neutron star mergers.  
[Robust]

Where does the r-process occur?

Rare core-collapse supernovae Neutron star mergers

Cas A (Chandra X-Ray observatory) Neutron-star merger simulation (S. Rosswog)

Neutron stars

neutron star mergers



R-process: Necessary Conditions

High neutron to seed ratio is needed to populate the 
observed A~130 and A ~ 190 peaks. !
!
This requires:  

• High entropy per baryon.!
• Short expansion time. !
• Low electron fraction (Ye). 

} Hydrodynamics, !
Magnetic Fields, etc 

} Neutrino Spectra

Dense matter properties determine the neutrino spectra 
emerging from the hot neutron star.  



Ye in the Neutrino Driven Wind

only over a very small range. Perhaps that
means that only a small minority of type II su-
pernovae, confined to a narrow mass range,
produce r-process elements.

Although abundance data for specific
isotopes in halo stars are much harder to ac-
quire than the spectroscopic data that pro-
vide the elemental abundances of figure 3,
recent isotopic observations appear to be in
agreement with the elemental abundance
trends. In particular, it has been found that
the two stable isotopes of europium are
found in the same proportion in several old,
metal-poor halo stars as they occur in solar system 
r-process material.11

That is not particularly surprising, because Eu is still
synthesized overwhelmingly by the r-process. But what
about elements like Ba that, unlike Eu, are nowadays pri-
marily made by the s-process? A recent study has found
that the relative abundance of different Ba isotopes in one
very old halo star is compatible with the Ba isotope ratio
attributable to the r-process in solar system material.12

The Eu and Ba isotope results support the conclusion that
only the r-process was producing heavy elements in the
early galaxy.

Elemental abundance patterns from additional 
r-process-rich halo stars now add support to this conclu-
sion.3 All the stars in this sample have Eu/Fe abundance
ratios that typically exceed that of the Sun by at least an
order of magnitude. Much less work, however, has been
done on r-process-poor halo stars. The halo stars presum-
ably got their heavy elements from material spewed out
by supernova explosions of an even earlier generation of
massive, short-lived stars. So not all halo stars acquired
the same share of these r-process ejecta. In halo stars poor
in r-process elements, the heavy elements are much harder
to identify spectroscopically. But studies of those very stars
might provide important clues about their massive pro-
genitors—the galaxy’s first stars.

Figure 3 also shows that the abundances of the lighter
n-capture elements, from Z = 40–50, generally fall below
the r-process curve that fits the heavier elements so well.
That difference is suggestive. It might be telling us that
the r-process sites for the lighter and heavier n-capture el-
ements are somehow different.13 Possible alternative sites
for the r-process include neutron-star binaries as well as
supernovae, or perhaps just different astrophysical condi-
tions in different regions of a single core-collapse super-
nova.3 Further complicating the interpretation, strontium,
yttrium, and zirconium (Z = 38–40)  seem to have a very
complex synthesis history that raises the specter of multi-
ple r-processes.

Is it always supernovae?
The critical parameter that determines whether the 
r-process occurs is the number of neutrons per seed nu-
cleus. To synthesize nuclei with A above 200 requires about

150 neutrons per seed nucleus. Iron is generally the light-
est of the relevant seed nuclei. Modelers of r-process nu-
cleosynthesis find the entropy of the expanding matter and
the overall neutron/proton ratio to be more useful param-
eters than temperature and neutron density. In a very neu-
tron-rich environment such as a neutron star, the r-process
could occur even at low entropy.8 But even a small excess
of neutrons over protons can sustain the r-process if the
entropy is high enough.14

The question is, Where in nature does one find the ap-
propriate conditions—either very neutron-rich material at
low entropies or moderately neutron-rich material at high
entropies? But if the entropy is too high, there will be too
few seed nuclei to initiate the r-process. The extreme case
is the Big Bang, from which 4He was essentially the heav-
iest surviving nucleus. 

Determining whether r-process conditions can occur
inside type II supernovae requires an understanding of the
nature of those stellar catastrophes. The most plausible
mechanism for such an explosion of a massive star is en-
ergy deposition in the star’s outer precincts by neutrinos
streaming from the hot proto-neutron star formed by the
gravitational collapse of the central iron-core when all the
fusion fuel is exhausted (see figure 4). The dominant neu-
trino energy deposition processes are

ne + n O p + e– and ne+ + p O n + e+.

The neutrino heating efficiency depends on convective in-
stabilities and the opacity of the stellar material to the
transit of neutrinos. The actual explosion mechanism is
still uncertain.7,14,15 Self-consistent supernova calculations
with presently known neutrino physics have not yet pro-
duced successful explosions.

There is hope, however, that the neutrino-driven ex-
plosion mechanism will prove to be right when the effects
of stellar rotation and magnetic fields are included in
model calculations that are not restricted to spherical sym-
metry. There is also still much uncertainty in our knowl-
edge of how neutrinos interact with dense matter (and in-
deed of how they behave in vacuum). The lack of
understanding of the type II supernova explosion mecha-
nism also means that we do not know the exact r-process
yields for these supernovae.

50 October 2004    Physics Today http://www.physicstoday.org
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Figure 3. Elemental abundances in the halo
star CS 22892-052 are compared with solar

system abundances attributable to the r-
process. The numerical values of the halo-
star abundances follow the convention of
figure 2. The solar system r-process abun-

dances are scaled down to compensate for
the higher metallicity of the much younger

Sun. (Adapted from ref. 9.)
only over a very small range. Perhaps that
means that only a small minority of type II su-
pernovae, confined to a narrow mass range,
produce r-process elements.

Although abundance data for specific
isotopes in halo stars are much harder to ac-
quire than the spectroscopic data that pro-
vide the elemental abundances of figure 3,
recent isotopic observations appear to be in
agreement with the elemental abundance
trends. In particular, it has been found that
the two stable isotopes of europium are
found in the same proportion in several old,
metal-poor halo stars as they occur in solar system 
r-process material.11

That is not particularly surprising, because Eu is still
synthesized overwhelmingly by the r-process. But what
about elements like Ba that, unlike Eu, are nowadays pri-
marily made by the s-process? A recent study has found
that the relative abundance of different Ba isotopes in one
very old halo star is compatible with the Ba isotope ratio
attributable to the r-process in solar system material.12

The Eu and Ba isotope results support the conclusion that
only the r-process was producing heavy elements in the
early galaxy.

Elemental abundance patterns from additional 
r-process-rich halo stars now add support to this conclu-
sion.3 All the stars in this sample have Eu/Fe abundance
ratios that typically exceed that of the Sun by at least an
order of magnitude. Much less work, however, has been
done on r-process-poor halo stars. The halo stars presum-
ably got their heavy elements from material spewed out
by supernova explosions of an even earlier generation of
massive, short-lived stars. So not all halo stars acquired
the same share of these r-process ejecta. In halo stars poor
in r-process elements, the heavy elements are much harder
to identify spectroscopically. But studies of those very stars
might provide important clues about their massive pro-
genitors—the galaxy’s first stars.

Figure 3 also shows that the abundances of the lighter
n-capture elements, from Z = 40–50, generally fall below
the r-process curve that fits the heavier elements so well.
That difference is suggestive. It might be telling us that
the r-process sites for the lighter and heavier n-capture el-
ements are somehow different.13 Possible alternative sites
for the r-process include neutron-star binaries as well as
supernovae, or perhaps just different astrophysical condi-
tions in different regions of a single core-collapse super-
nova.3 Further complicating the interpretation, strontium,
yttrium, and zirconium (Z = 38–40)  seem to have a very
complex synthesis history that raises the specter of multi-
ple r-processes.

Is it always supernovae?
The critical parameter that determines whether the 
r-process occurs is the number of neutrons per seed nu-
cleus. To synthesize nuclei with A above 200 requires about

150 neutrons per seed nucleus. Iron is generally the light-
est of the relevant seed nuclei. Modelers of r-process nu-
cleosynthesis find the entropy of the expanding matter and
the overall neutron/proton ratio to be more useful param-
eters than temperature and neutron density. In a very neu-
tron-rich environment such as a neutron star, the r-process
could occur even at low entropy.8 But even a small excess
of neutrons over protons can sustain the r-process if the
entropy is high enough.14

The question is, Where in nature does one find the ap-
propriate conditions—either very neutron-rich material at
low entropies or moderately neutron-rich material at high
entropies? But if the entropy is too high, there will be too
few seed nuclei to initiate the r-process. The extreme case
is the Big Bang, from which 4He was essentially the heav-
iest surviving nucleus. 

Determining whether r-process conditions can occur
inside type II supernovae requires an understanding of the
nature of those stellar catastrophes. The most plausible
mechanism for such an explosion of a massive star is en-
ergy deposition in the star’s outer precincts by neutrinos
streaming from the hot proto-neutron star formed by the
gravitational collapse of the central iron-core when all the
fusion fuel is exhausted (see figure 4). The dominant neu-
trino energy deposition processes are

ne + n O p + e– and ne+ + p O n + e+.

The neutrino heating efficiency depends on convective in-
stabilities and the opacity of the stellar material to the
transit of neutrinos. The actual explosion mechanism is
still uncertain.7,14,15 Self-consistent supernova calculations
with presently known neutrino physics have not yet pro-
duced successful explosions.

There is hope, however, that the neutrino-driven ex-
plosion mechanism will prove to be right when the effects
of stellar rotation and magnetic fields are included in
model calculations that are not restricted to spherical sym-
metry. There is also still much uncertainty in our knowl-
edge of how neutrinos interact with dense matter (and in-
deed of how they behave in vacuum). The lack of
understanding of the type II supernova explosion mecha-
nism also means that we do not know the exact r-process
yields for these supernovae.
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star CS 22892-052 are compared with solar

system abundances attributable to the r-
process. The numerical values of the halo-
star abundances follow the convention of
figure 2. The solar system r-process abun-

dances are scaled down to compensate for
the higher metallicity of the much younger

Sun. (Adapted from ref. 9.)

Is set by the charged current !
reactions  in two regions. {

Neutrino-sphere at high density 
and moderate entropy.  !
R ~ 10-20 km

Neutrino driven wind at low-
density and high entropy. !
R ~ 103-104 km 
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Ṅ⌫̄e h�⌫̄ei+ Ṅ⌫e h�⌫ei
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Reddy, Prakash & Lattimer (1998), Roberts (2012), Martinez-Pinedo et al. (2012), Roberts & Reddy (2012)

Dense medium changes the “Q” value of the reaction.

Charged Current Opacity

• Protons experience larger attraction in neutron-rich matter.  !

• Large symmetry energy favors electron neutrino absorption and 
disfavors anti-electron neutrino absorption.  

Dense Medium

n n

p p
Energy Gain Energy Loss

~10-20 MeV
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Figure 3.5: Top panel: First energy moment of the outgoing electron neutrino and antineutrino
as a function of time in three PNS cooling simulations. The solid lines are the average energies
of the electron neutrinos and the dashed lines are for electron antineutrinos. The black lines
correspond to a model which employed the GM3 equation of state, the red lines to a model which
employed the IU-FSU equation of state, and the green lines to a model which ignored mean field
effects on the neutrino opacities (but used the GM3 equation of state). Bottom panel: Predicted
neutrino driven wind electron fraction as a function of time for the three models shown in the
top panel (solid lines), as well as two models with the bremsstrahlung rate reduced by a factor
of four (dot-dashed lines). The colors are the same as in the top panel.
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w/o nuclear effects

neutron-rich !
ejecta

proton-rich !
ejecta



NS Collisions - Gravitational  Waves 

The gravitational waves, EM 
counterparts, and 
nucleosynthesis are sensitive 
nuclear and neutrino physics.

Advanced LIGO  

- Expects to detect them by 2016 !

Neutron-star mergers and 
 gravitational waves 

explore sensitivity to neutron-rich matter 
in neutron-star merger and gw signal 
Bauswein, Janka (2012), Bauswein, Janka, Hebeler, AS (2012). 

Neutron-star mergers and 
 gravitational waves 

explore sensitivity to neutron-rich matter 
in neutron-star merger and gw signal 
Bauswein, Janka (2012), Bauswein, Janka, Hebeler, AS (2012). 

Neutron-star mergers and 
 gravitational waves 

explore sensitivity to neutron-rich matter 
in neutron-star merger and gw signal 
Bauswein, Janka (2012), Bauswein, Janka, Hebeler, AS (2012). 



Inspiral: !
Gravitational 
waves, Tidal 

Effects & !
Dense Matter EoS

Merger: !
Disruption, NS 

oscillations, ejecta !
and r-process 

nucleosynthesis

Post Merger: !
Ambient conditions  

power GRBs, !
Afterglows, and !
Kilo/Macro Nova

Neutron Star Merger Dynamics 
(General) Relativistic (Very) Heavy-Ion Collisions at ~ 100 MeV/nucleon 

Simulations: Rezzola et al (2013)



NEUTRON STAR RADII FROM PRE MERGER SIGNAL
Neutron-star mergers and 

 gravitational waves 

explore sensitivity to neutron-rich matter 
in neutron-star merger and gw signal 
Bauswein, Janka (2012), Bauswein, Janka, Hebeler, AS (2012). 

Neutron-star mergers and 
 gravitational waves 

explore sensitivity to neutron-rich matter 
in neutron-star merger and gw signal 
Bauswein, Janka (2012), Bauswein, Janka, Hebeler, AS (2012). 
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These are obtained by marginalizing over all the other
parameters in the problem; for instance,

p(�0|dn, I) =
Z

d~✓ d�1 p(~✓,�0,�1|dn, I), (5)

where ~✓ represents masses, sky position, orientation of
the orbital plane, and distance. The joint posterior den-
sity function for all the parameters takes the form

p(~✓,�0,�1|dn, I) =
p(dn|~✓,�0,�1, I) p(~✓,�0,�1|I)

p(dn|I) . (6)

Here p(~✓,�0,�1|I) = p(~✓|I) p(�0|I) p(�1|I). The prior

density p(~✓|I) is taken to be the same as in [20]. We
express �(m) in units of s5. For p(�0|I) we choose a flat
distribution in the range [0, 5]⇥ 10�23 s5, and for p(�1|I)
a flat distribution on [�5, 0]⇥ 10�18 s4 M

�

; these choices
cover all the EOS considered in [6]. The prior probability
for the data, p(dn|I), is obtained by demanding that the
left hand side of (6) be normalized. Finally, the likelihood
is given by [19]

p(dn|~✓,�0,�1, I)

= N exp

"
�2

Z fLSO

f0

df
|d̃n(f) � h̃lin(~✓,�0,�1; f)|2

Sn(f)

#
,(7)

where N is a normalization factor, d̃n is the Fourier
transform of the data stream for the nth detection, and
Sn(f) is the one-sided noise power spectral density; f0
is a lower cut-o↵ frequency, which we take to be 20 Hz.
h̃lin(~✓,�0,�1; f) is our frequency domain waveform, with
the linearized expression for �(m), Eq. (4), substituted
into the tidal contribution to the phase, Eq. (1). To
explore the likelihood function, we used the method of
Nested Sampling as implemented by Veitch and Vecchio
[19].

In Fig. 1, we show the evolution with an increasing
number of sources of the medians and 95% confidence
intervals in the measurement of �0, for three di↵erent
EOS models from Hinderer et al. [6]: a hard EOS (MS1),
a moderate one (H4), and a soft one (SQM3). In each
case, after a few tens of sources, the value of �0 is
recovered with a statistical uncertainty ⇠ 10%, and it is
easily distinguishable from the ones for the other EOS.
(On the other hand, �1 remains uncertain.) We see that
the posterior medians for �0 are ordered correctly, which
suggests a second method to identify the EOS, namely
hypothesis ranking.

Method 2: Hypothesis ranking. Hinderer et al. computed
the function �(m) for a large number of (families of)
equations of state, some of them mainly involving neu-
trons, protons, electrons, and muons, others allowing for
pions and hyperons, and a few assuming strange quark
matter. Given a (arbitrarily large) discrete set {Hk} of
models, each corresponding to a di↵erent EOS, or equiv-
alently a di↵erent deformability �(m), the relative odds

10 20 30 40 50
Events
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1

2

3

4

5

�
0/

� 10
�

23
s5

�

95% conf MS1
95% conf H4
95% conf SQM3
True value

FIG. 1. Median and 95% confidence interval evolution for
the �0 parameter as an increasing number of sources is taken
into consideration, for three di↵erent equations of state in the
signals: a hard (MS1), a moderate (H4), and a soft (SQM3)
EOS. In each case, the dashed line indicates the true value.

ratios for any pair of models Hi, Hj can be computed as

Oi
j =

P (Hi|d1, d2, . . . , dN , I)

P (Hj |d1, d2, . . . , dN , I)
. (8)

Again assuming independence of the detector outputs
d1, d2, . . . , dN and using Bayes’ theorem, one can write

Oi
j =

P (Hi|I)
P (Hj |I)

NY

n=1

P (dn|Hi, I)

P (dn|Hj , I)
. (9)

P (Hi|I) is the probability of the model Hi before any
measurement has taken place, and similarly for Hj ; in
the absence of more information, these can be set equal
to each other for all models Hk. The evidences for the
various models are given by

p(dn|Hk, I) =

Z
d~✓ p(dn|Hk, ~✓, I) p(~✓|I), (10)

with ~✓ the parameters of the template waveforms
(masses, sky position, etc.) and p(~✓|I) the prior prob-
abilities for these parameters, which we choose to be the
same as in [20]. The likelihood function p(dn|Hk, ~✓, I)
takes the form

p(dn|Hk, ~✓, I)

= N exp

"
�2

Z fLSO

f0

df
|d̃n � h̃k(~✓; f)|2

Sn(f)

#
. (11)

This time h̃k(~✓; f) is the waveform model correspond-
ing to the EOS Hk, meaning the abovementioned fre-
quency domain approximant with tidal contributions to
the phase as in Eq. (1), with a deformability �(m) corre-
sponding to that EOS. Here too, we use Nested Sampling
to probe the likelihood [19].
The set {Hk} could comprise all the models consid-

ered in e.g. [6], and many more. In this Letter we wish

R=14.9 km

R=13.7 km

R=10.8 km

Pozzo et al. (2013)

Realistic data analysis by injecting events in a volume between 
100-250 Mpc demonstrates discriminating power between EOSs. 
Pozzo et al. (2013)

!
With a few tens of events the radius can be extracted to better 
than 10%.    


Extracting equation of state parameters from black hole-neutron star mergers:

aligned-spin black holes and a preliminary waveform model

Benjamin D. Lackey1, Koutarou Kyutoku2, Masaru Shibata3, Patrick R. Brady4, John L. Friedman4
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Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
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Information about the neutron-star equation of state is encoded in the waveform of a black hole-
neutron star system through tidal interactions and the possible tidal disruption of the neutron star.
During the inspiral this information depends on the tidal deformability ⇤ of the neutron star, and we
find that ⇤ is the best measured parameter during the merger and ringdown as well. We performed
134 simulations where we systematically varied the equation of state as well as the mass ratio,
neutron star mass, and aligned spin of the black hole. Using these simulations we have developed an
analytic representation of the full inspiral-merger-ringdown waveform calibrated to these numerical
waveforms, and we use this analytic waveform to estimate the accuracy to which ⇤ can be measured
with gravitational-wave detectors. We find that although the inspiral tidal signal is small, coherently
combining this signal with the merger-ringdown matter e↵ect improves the measurability of ⇤ by
a factor of ⇠ 3 over using just the merger-ringdown matter e↵ect alone. However, incorporating
correlations between all the waveform parameters then decreases the measurability of ⇤ by a factor
of ⇠ 3. The uncertainty in ⇤ increases with the mass ratio, but decreases as the black hole spin
increases. Overall, a single Advanced LIGO detector can measure ⇤ for mass ratios Q = 2–5, black
hole spins JBH/M

2
BH = �0.5–0.75, neutron star masses MNS = 1.2M�–1.45M�, and an optimally

oriented distance of 100 Mpc to a 1-� uncertainty of ⇠ 10%–100%. For the proposed Einstein
Telescope, the uncertainty in ⇤ is an order of magnitude smaller.

PACS numbers: 97.60.Jd, 26.60.Kp, 95.85.Sz

I. INTRODUCTION

By the end of the decade a network of second genera-
tion gravitational-wave detectors, including the two Ad-
vanced LIGO (aLIGO) detectors [1], Advanced Virgo [2],
KAGRA [3] (formerly LCGT), and possibly LIGO-
India [4], will likely be making routine detections. Fu-
ture ground based detectors such as the third generation
Einstein Telescope (ET) [5], with an order of magnitude
higher sensitivity, are also in the planning stages, and
may be operational in the next decade. A primary goal of
these detectors is extracting from the gravitational wave-
form information about the sources. Of particular inter-
est are compact binaries whose waveform encodes the
sky location, orientation, distance, masses, spins, and for
compact binaries containing neutron stars (NS), informa-
tion about the neutron-star equation of state (EOS).

The study of EOS e↵ects during binary inspiral has
focused mainly on binary neutron star (BNS) systems.
Work by [6–9] showed that EOS information could be im-
printed in the gravitational waveform through tidal inter-
actions. In the adiabatic approximation, the quadrupole
moment Qij of one star depends on the tidal field Eij

from the monopole of the other star through the rela-
tion Qij = ��Eij , where � is the EOS dependent tidal
deformability and is related to the neutron star’s dimen-
sionless Love number k2 and radius R through the re-
lation � = 2

3Gk2R
5. The leading (` = 2) relativistic

tidal Love number k2 was first calculated in Ref. [10] for
polytropic EOS, then for EOS with hadronic and quark

matter [11, 12], as well as for EOS with analytic solu-
tions to the stellar structure equations [12]. Its e↵ect
on the binary inspiral (including the contribution due
to tidally excited f-modes) was calculated to leading or-
der [13], and later extended to 1PN order [14, 15]. The
gravitoelectric and gravitomagnetic tidal Love numbers
for higher multipoles were calculated in [16, 17]. The en-
ergy has now been calculated to 2PN order in the tidal
corrections in the e↵ective one body (EOB) formalism,
including ` = 2 and 3 gravitoelectic interactions and the
` = 2 gravitomagnetic interaction, using the e↵ective ac-
tion approach [18], and most terms in the EOB wave-
form are now known to 2.5PN order in the tidal interac-
tions [19]. Finally, the accuracy of the adiabatic approxi-
mation to tidal interactions was calculated using an a�ne
model, and a Love function was found that corrects for
this approximation and asymptotically approaches the
Love number for large binary separations [20, 21].

The measurability of tidal parameters by detectors
with the sensitivity of aLIGO and ET was examined
for BNS inspiral for gravitational wave frequencies below
450Hz [13] using polytropic EOS as well as for theoretical
hadronic and quark matter EOS [11]. The studies found
that tidal interactions were observable during this early
inspiral stage (prior to the last ⇠ 20 gravitational wave
cycles before merger) only for sti↵ EOS and NS masses
below 1.4 M�. On the other hand, using tidal correc-
tions up to 2.5PN order in the EOB approach, it was
found that tidal parameters are in fact observable when
including the extra ⇠ 20 gravitational wave cycles up to
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neutron star mergers

Nucleosynthesis of heavy elements:
r-process and its astrophysical site

Almudena Arcones
Helmholtz Young Investigator Group

Cas A (Chandra X-Ray observatory) Rezzolla et al.

INT Workshop: The r-process: status and challenges
July 28 - August 1, 2014Merger Ejecta & Nucleosynthesis

Tidal ejecta: !
Early, and very !
neutron-rich. 
Robust r-process. 

Shocked ejecta: !
Processed by neutrinos, much like 
in a supernova.   

Amount and composition of the material ejected 
depends on the neutron star radius and neutrino 
interactions in dense matter. 



Ejecta and GRB afterglow: KilonovaTransient with kilo-nova luminosity (Metzger et al. 2010, Roberts et al. 2011, 
Goriely et al. 2011): direct observation of r-process, EM counter part to GW

Radioactive decay in neutron star mergers

Multi messenger (e.g. Metzger & Berger 2012, Rosswog 2012, Bauswein et al. 2013)

Berger, Fong & Chornock, 2013
Tanaka & Hotokezaka, 2013, Hotokezaka et al. 2013
Grossman, Korobkin, Rosswog, Piran, 2014

Transient with kilo-nova luminosity (Metzger et al. 2010, Roberts et al. 2011, 
Goriely et al. 2011): direct observation of r-process, EM counter part to GW

Radioactive decay in neutron star mergers

Multi messenger (e.g. Metzger & Berger 2012, Rosswog 2012, Bauswein et al. 2013)

Berger, Fong & Chornock, 2013
Tanaka & Hotokezaka, 2013, Hotokezaka et al. 2013
Grossman, Korobkin, Rosswog, Piran, 2014

• Radioactive heavy elements 
synthesized and ejected can 
power an EM signal
Metzger et al.  2010, Roberts et al. 2011, !
Goriely et al. 2011

• Magnitude and color of the 
optical emission is sensitive 
to the composition of the 
ejecta. 
Kasen 2013

Detection of a Kilonova 
Tanvir et al.  2013



Summary & Outlook

• Diverse explosive and transient phenomena are driven 
by similar nuclear and neutrino processes. 


• Simulations and dense matter theory has begun to 
identify robust connections to guide observations and 
interpretation.   


• Multi-wavelength, multi-messenger astronomy can 
probe source properties at microscopic scales. 


• GWs from neutron star mergers - an exciting near term 
prospect with important implications for neutron stars, 
dense matter theory and nucleosynthesis.  



Reactions in the Neutrino-sphere
MU- AND TAU-NEUTRINO SPECTRA FORMATION IN SNe 891

FIG. 1.ÈSchematic picture of neutrino spectra formation in the atmo-
sphere of an SN core.

The other Ñavors interact with the medium primarily by
neutral-current collisions on nucleons lN % Nl, a reaction
that is subdominant for the electron Ñavor. The nucleon
mass m \ 938 MeV is much larger than the relevant tem-
peratures, which are around T \ 10 MeV, so that energy
exchange between neutrinos and nucleons is inefficient.
However, nucleon-nucleon bremsstrahlung NN % NNll6 ,
as well as the leptonic processes and le % el,e`e~ % ll6
allow for the exchange of energy and the creation or
destruction of neutrino pairs and thus keep neutrinos in
local thermal equilibrium up to a radius at which these
reactions freeze out, the ““ energy sphere.ÏÏ However, the neu-
trinos are still trapped by lN % Nl up to the ““ transport
sphere, ÏÏ whence they stream freely. Between the energy and
transport spheres, neutrinos propagate by di†usion. This
region plays the role of a scattering atmosphere.

In all numerical simulations of SN neutrino transport the
neutrino collisions in the scattering atmosphere were
treated as isoenergetic so that the energy of the outgoingv2neutrino in lN ] Nl was set equal to the energy of thev1initial state. The main motivation for this approximation
was its numerical simplicity and the lack of a compelling
interest in details of the emerging and spectra. It islk lqclear, however, that isoenergetic collisions are not a particu-
larly good approximation. In Figure 2 we show the dis-
tribution of Ðnal-state energies when MeV andv2 v1 \ 30
the medium temperature is 10 MeV. A typical nucleon
velocity is then about 20% of the speed of light, so that it is
not surprising that even after a single collision the neutrino
energy is considerably smeared out. Since neutrinos interact
many times in the scattering atmosphere and since the
medium temperature decreases between the energy and
transport spheres, there can be a signiÐcant downward
adjustment of the neutrino energies (Janka et al. 1996 ; Han-
nestad & Ra†elt 1998). The main purpose of the present
paper is to provide a conceptual understanding and a quan-
titative estimate of the magnitude of this e†ect.

To address this problem, we simplify the model of Figure
1. The very concept of an energy sphere suggests that one
should think of it as a source of thermal neutrinos that
subsequently di†use through the scattering atmosphere.
Taking this concept literally amounts to the simple picture

FIG. 2.ÈDistribution of Ðnal-state energies of a neutrino with initialv2energy MeV, scattering on nondegenerate nucleons in thermalv1 \ 30
equilibrium with T \ 10 MeV. Details of how to calculate this plot are
described in Appendix B1.

illustrated in Figure 3. One no longer worries about
detailed processes like NN bremsstrahlung to thermalize
the neutrinos, but instead one directly feeds a thermal Ñux
into the scattering atmosphere.

Section 2 of our paper is devoted to showing that this
simple picture actually provides a surprisingly accurate rep-
resentation of the spectra formation problem. The neutrinos
streaming o† the transport sphere then have Ñuxes and
spectra that depend only on the temperature and theTESthermally averaged transport optical depth at theq6 ESenergy sphere, which here coincides with the bottom of the
scattering atmosphere.

As a next step, in ° 3 we study a scattering atmosphere
with a blackbody boundary condition at the bottom and
with isoenergetic lN collisions as the only neutrino inter-
action channel. We derive an explicit relationship between

and the spectral Ñux temperature of the escapingTES Tfluxneutrinos as a function of Comparing with full-scaleq6 ES.numerical simulations indicates that this exceedingly simple
model accounts for the main features of the andlk lqspectra.

Then in ° 4 we include nucleon recoils in this model. We
consider di†erent types of temperature proÐles to estimate
the shift of the Ñux temperature and identify the critical
parameters that govern *Tflux.In ° 5 we summarize and discuss our Ðndings. Many
technical details, especially regarding our implementation
of neutrino-nucleon interactions with recoil energy transfer

FIG. 3.ÈSchematic picture of our simpliÐed treatment of the scattering
atmosphere. is the medium temperature at the energy sphere.TES

Fig: From Raffelt (2001)
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Post Merger Dynamics 

Neutron-star mergers and 
 gravitational waves 

explore sensitivity to neutron-rich matter 
in neutron-star merger and gw signal 
Bauswein, Janka (2012), Bauswein, Janka, Hebeler, AS (2012). 

Neutron-star mergers and 
 gravitational waves 

explore sensitivity to neutron-rich matter 
in neutron-star merger and gw signal 
Bauswein, Janka (2012), Bauswein, Janka, Hebeler, AS (2012). 

• Peak frequency of neutron star oscillations post merger is 
correlated with neutron star radius.!

• Black-hole formation, nucleosynthesis in the ejecta are 
also sensitive to dense matter properties.    

Bauswein, Janka, et al. !
(2012,2014)
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